Bell Ringer

Evaluate
$$8x^2 + \frac{2}{3}$$
 when $x = -1$

Evaluate $x^2 - 4xy$ when x = -2 and y = 5

Bell Ringer

Evaluate
$$8x^2 \div \frac{2}{3}$$
 when $x = -1$

$$8(-1)^3 \div \frac{2}{3}$$

$$8 \cdot \frac{3}{2} = \frac{24}{3} = (12)^3$$

Evaluate
$$x^2 - 4xy$$
 when $x = -2$ and $y = 5$
 $(-2)^3 - 4(-2)(5)$
 $4 - -40$
 $4 + 40$

Square Root Notes

A square root of a number is one of its two equal factors, which means if $x^2 = y$, then x is the square root of y.

Example: $5^2 = 25$, so 5 is the square root of 25.

Every positive number has both a positive and negative square root.

A radical symbol T is used to indicate a square root.

The opposite of squaring a number is finding the square root.

If a negative number is inside the radical symbol, the value is undefined. (In Algebra II, you'll learn about imaginary numbers *i*)

Perfect squares are the squares of integers. Below is the list of the first 15 perfect squares.

$$\sqrt{1} = \pm 1$$

$$\sqrt{1} = \pm 1$$
 $\sqrt{36} = \pm 6$

$$\sqrt{121} = \pm 11$$

$$\sqrt{4} = \pm 2$$

$$\sqrt{49 = \pm 7}$$

$$\sqrt{4} = \pm 2$$
 $\sqrt{49} = \pm 7$ $\sqrt{144} = \pm 12$

$$\sqrt{9} = \pm 3$$

$$\sqrt{9} = \pm 3$$
 $\sqrt{64} = \pm 8$ $\sqrt{169} = \pm 13$

$$\sqrt{16} = \pm 4$$

$$\sqrt{81} = \pm 9$$

$$\sqrt{16} = \pm 4$$
 $\sqrt{81} = \pm 9$ $\sqrt{196} = \pm 14$

$$\sqrt{25} = \pm 5$$

$$\sqrt{100} = \pm 10$$

$$\sqrt{25} = \pm 5$$
 $\sqrt{100} = \pm 10$ $\sqrt{225} = \pm 15$

Find each square root.

4)
$$\sqrt{-9}$$

undefined

Estimate each square root to the nearest integer.

5)
$$\sqrt{22}$$

Evaluate. Round to the nearest hundredth.

7-3/2

Solve the equation.

8)
$$2x^{2} - 5 = 27$$

 $+5 + 5$
 $2x^{3} = 32$
 $x^{3} = 16$
 $x^{3} = 16$
 $x^{3} = 16$

Solve the equation. Leave in radical form.

9)
$$5x^{2} + 5 = 20$$
 $-5 - 5$
 $5x^{3} = 15$

$$X^{3} = 3$$

$$X^{3} = \sqrt{3}$$

Solve the equation. Round to the nearest hundredth.

10)
$$4x^2 - 3 = 57$$

$$x^{a} = 15$$

$$x = \pm 3.87$$

skipped the work steps Solve the equation. Round to the nearest hundredth.

11)
$$\frac{2}{3}$$
 n² - 6 = 2

$$\frac{2}{3}n^2 = 8$$

$$n^2 = \frac{8}{1} \cdot \frac{3}{2}$$